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� Introduction: some challenges for planar solvers
� High-speed and RF circuits

� quasi-static approximation
� polygonal mesh
� star-loop transformation
� examples

� Multidimensional Adaptive Parameter Sampling
� full-wave versus circuit analysis
� adaptive model building based on reflective exploration
� examples

� Conclusion
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Some challenges for planar solversSome challenges for planar solvers

� very large structures e.g. antenna arrays
� finite ground plane effects
� optimisation as a function of frequency and

geometrical parameters e.g. in filter or antenna
design

� thick conductors e.g. in on-chip interconnect
� geometrically complex structures with many ports
� real 3D features e. g. bonding wires or non-planar

stratified substrates
� ............
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First challenge: high-speed and RF circuitsFirst challenge: high-speed and RF circuits

  Challenging circuits
• high-speed digital RF board
• IC package (e.g. BGA)
• RF module (MCM, LTCC)
• RFIC (silicon)

  Distinguishing features
• electrically small
• geometrically complex
• many ports
• from DC to RF

�/10
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“Classical” circuits“Classical” circuits

  Classical circuits
• microwave hybrid (Alumina)
• microwave MMIC (GaAs)
• planar antennas and arrays

  Typical features
• order of wavelength dimensions
• geometrically simple
• few ports
• microwave and millimeter waves
• mixed strip-slot circuits
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Electromagnetic basics for a planar solverElectromagnetic basics for a planar solver

� Mixed Potential Integral Equation

� Method of Moments solution 
• mixed triangle - rectangle mesh
• introduction of rooftop basis
  functions to represent unknown
  surface currents
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EM basics for a planar solver - cont.EM basics for a planar solver - cont.

B1(r) B2(r) B3(r)

I1 I2 I3

I1 I2 I3

C11 C22

C12

L11

L23

L22

L13
L12

L33R22

��10

Method of Moments
Maxwell’s equations

matrix equation

equivalent circuit

[Z(�)].[I]=[V]

[Z] = [R] + j�[L] + 1/j� [C] -1

frequency dependent !
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Full-wave versus quasi-staticFull-wave versus quasi-static

  Distinguishing features
• electrically small
• geometrically complex
• many ports
• from DC to RF

� �...111
���

� jkRe R
jkR

R

D

[mm] D
150    [GHz] freq �

• near-field / low frequency 
  approximation

   L(�) = L0 + �L1 + �2L2 + ....

   C(�) = C0 + �C1 + �2C2 + ....
• L0 and C0 are frequency independent
• far-field radiation terms are neglected
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Traditional meshingTraditional meshing

   rectangular cell      triangular cell

��10

10 cells

Rectangular - triangular mesh at microwave frequencies

the mesh is governed
by a wavelength criterion
i.e. typically 10 divisions
per wavelength 
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Polygonal meshingPolygonal meshing

��10

6 cells

Rectangular - triangular mesh at RF frequencies

now the mesh is governed
by the geometrical complexity

  L-shaped cell     T-shaped cell   polygonal cell

Introduction of arbitrary polygonal cells and 
corresponding current basis functions
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Generalised basis functionsGeneralised basis functions

• generalisation of well-known rooftops on triangles and rectangles
• current is curl free
• the divergence is constant i.e. constant surface charge
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Solution: solve an integral equation for a function K
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(K is a harmonic function)
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Optimised polygonal meshOptimised polygonal mesh

1 cell

4 cells

10 cells

��10
RF Frequency

    Distinguishing features
• electrically small
• geometrically complex
• many ports
• from DC to RF

• minimizes number of cells, respecting 
/10 criterion
• handles geometrical complexity
• extends well-known concepts for triangles and rectangles
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The low-frequency breakdownThe low-frequency breakdown

    Distinguishing features
• electrically small
• geometrically complex
• many ports
• from DC to RF[Z] = j�[L] + 1/j� [C]-1

infinityzero

[Z] is ill-conditioned for low frequencies

� numerical solution breaks down

[Z].[I]=[V]
Method of Moments

for low frequences:

solution: the star-loop transformation
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The star-loop transformationThe star-loop transformation

star functionloop function

B        (r)
loop

B       (r)
star

• original basis functions: rooftops
• these basis functions are now transformed into a new set of
  basis functions: the loop functions and the star functions
• this transform is linear

loops

model
magneto-

static
problem

zero
divergence

stars

model
electro-
static

problem
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First challenge: high-speed and RF circuits - summaryFirst challenge: high-speed and RF circuits - summary

High Speed Digital and Analog RF Applications

Electrically small                      Quasi-static model
Geometrically complex            Polygonal mesh

DC to RF frequencies               Star-loop transform

�
• speed
• capacity
• accuracy

�

advanced planar
solution technique

�

�

�

�
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Some sample applicationsSome sample applications

Momentum RF &  Momentum

100 mm

10 mm

1 mm

Planar Antennas

 electrical size

Antenna Arrays  High Speed Digital Board 

RF Board (FR4, Duroid) 
RF Module (LTCC) 

RFIC (Silicon)  

frequency

100 GHz100 MHz 1 GHz 10 GHz

ph
ys

ic
al

 si
ze

Rule of thumb line

Microwave Hybrid

Microwave MMIC (GaAs) 

Millimeter wave 

��/100�������/10          �            10�� 
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Example 1: RF board interconnectExample 1: RF board interconnect

43.67 mm

35
.6

0 
m

m

��20 30 mil

AIR

GND

FR4

Rule of thumb: frequency < 2.66 GHz

Purpose:
compare
classical approach
with new techniques



20D. De Zutter et al.

Example 1: RF board interconnect - cont.Example 1: RF board interconnect - cont.

classical (Momentum)

    mesh: 20 cells/� at 1 GHz

  Matrix size      :   3428

  Process size   :  152.48 MB

  User time        :  3h 14m 51s

rectangular and
triangular mesh
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Example 1: RF board interconnect - cont.Example 1: RF board interconnect - cont.

new (Momentum RF)

    mesh: 20 cells/� at 1 GHz

  Matrix size      :   733

  Process size   :  59.35 MB

  User time        :  14m 24s
polygonal mesh

�memory saving: factor 3
CPU-time saving: factor 14
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Crosstalk

           Momentum
            Momentum RF

Example 1: RF board interconnect - cont.Example 1: RF board interconnect - cont.

Transmission

Ground
bounce

Reflection

S13,42

S24,60

S42,42

S12,42

port 60

port 24

port 42

port 12

port 13
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Example 2: ball grid array packageExample 2: ball grid array package

port  1

7.6 mm

7.6
mm

port  2

port  3

port  4

Rule of thumb:
frequency < 2.66 GHz

Purpose:
time-domain analysis
for a 100ps rise time
signal and 50� loads



24D. De Zutter et al.

Example 2: ball grid array package - cont.Example 2: ball grid array package - cont.

input
output

input crosstalk
output crosstalk

classical (Momentum)

  Matrix size      :   8244
  Process size   :  > 1 GB
  User time        :  > 1 day

new (Momentum RF)

  Matrix size      :   1354
  Process size   :  106.6 MB
  User time        :  1h 47m 53s

memory saving: 
factor 10
CPU-time saving: 
factor 20

�
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Some challenges for planar solvers - cont.Some challenges for planar solvers - cont.

� very large structures e.g. antenna arrays
� finite ground plane effects
�� optimisation as a function of frequency andoptimisation as a function of frequency and

geometrical parameters e.g. in filter or antennageometrical parameters e.g. in filter or antenna
designdesign

� thick conductors e.g. in on-chip interconnect
�� geometrically complex structures with many portsgeometrically complex structures with many ports
� real 3D features e. g. bonding wires or non-planar

stratified substrates
� ............
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Field analysis versus circuit analysisField analysis versus circuit analysis

� numerical solution of Maxwell’s equations (finite
elements; finite differences in time domain; method of
moment solution of an integral equation)

� no partitioning - complete circuit as a whole
� all high frequency couplings and radiation effects

are included
� very accurate
� “slow”: very CPU-time and memory demanding
� less suited for design, optimisation and tolerance

analysis

Field Analysis
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Field analysis versus circuit analysis - cont.Field analysis versus circuit analysis - cont.

� based on Kirchoff laws

� structure is first partitioned into subcircuits

� parameterised models of (a class of) substructures are
available

� fast and suited for design and optimisation
� many models of substructures are not very accurate
� the set of available models is limited (e.g. a tee, a step-

in-width, an open end, ...)
� coupling between substructures and radiation is neglected

Circuit Analysis
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Field analysis versus circuit analysis - cont.Field analysis versus circuit analysis - cont.

Method of Moment meshing
of a low pass filter

subcircuit partitioning 
via S-parameters

in
out

�

�

� �
�

��

��

�

�
��

in out

�

�

�

�

open end

tee

T.L.
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Multidimensional Adaptive Parameter SamplingMultidimensional Adaptive Parameter Sampling

MAPS

circuit-
simulator

field simulator

speed

accuracy

ideal

new technique

MAPS: “best of both worlds”
field accuracy

circuit speed and optimisation�
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Existing approaches and techniquesExisting approaches and techniques

� hand-made analytical models

� discrete model library

� look-up tables combined with local curve fitting

� artificial neural networks

� ..............

� oversampling / undersampling

� inability to automatically control the accuracy

Common drawbacks
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What are we looking for?What are we looking for?

� fully automated algorithm

� no a-priori knowledge required

� minimum number of samples

� guaranteed and predefined accuracy

� highly adaptive
� adaptive model building
� adaptive sample selection in both frequency and parameter space

� samples: full wave MoM simulations

� obtained model: S-parameter or RLGC circuit model
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Data representationData representation

     data( f, p ) =     {Cm (f )  Pm (p) }�
m

� data: S-parameters  or  transmission line parameters (RLGC)
� f: frequency
� p: coordinates in parameter space
� Pm: orthonormal multidimensional polynomials

        (generalized Forsythe multinomials) (stored in database)

� Cm: frequency dependent fitting coefficients (stored in database)
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Adaptive sampling and model buildingAdaptive sampling and model building

Initialization

EM simulation

Multinomials:
 

Forsythe Fit

Fit error < �

Reflective
exploration

Write model file

Increase
order
if neededAdd data

if needed

Flow chart of up-front calculation

adaptive
model
selection
loop

adaptive
sample
selection 
loop

Pm
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Adaptive sampling and model building - cont.Adaptive sampling and model building - cont.

difference between models of different order:
                         check: | model1 - model2 | < accuracy level

extrema:
                         add samples near local minimum/maximum

physical conditions:
                         no gain allowed, check radiation
       ..........

Reflective exploration at multiple frequencies

Data selection for very costly data

�
start with initial set of data points

new data points are selected based on reflective functions, e.g.
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 -40

 -59.8

Example 1: open endExample 1: open end

W

100 �m �r=12.9

100 �m

W: 20 �m � 120 �m
freq.: 0 � 60 GHz
accuracy: -60 dB

 -62.4accuracy
(dB)

W

�

�
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Example 2: gap couplingExample 2: gap coupling

W: 40 �m � 100 �m

freq.: 0 � 60 GHz
accuracy: -60 dB

G: 1 �m �  21 �m
W

G

40 100

21

 1

NG = 7

NW = 6

W

100 �m �r=12.9

100 �m100 �m

G

S(W,G,f) = Co(f) + C1(f) W + C2(f) G + 
                  C3(f) WG + ... C26(f) W4G
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Example 3: low pass filterExample 3: low pass filter

600600

377

2328

1288

2769 2769

1970

323

2900 302 1986

2403

1633

635 �m

�r = 10, tg� = 0.015

Method of Moments circuit partitioning + MAPS
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Example 3: low pass filter - cont.Example 3: low pass filter - cont.

frequency (GHz)

frequency (GHz)

|S11|

|S21|

full wave (Momentum)
circuit simulator
new MAPS models full wave (Momentum)

circuit simulator
new MAPS models
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Example 4: microstrip-fed patch antenna @ 10GHzExample 4: microstrip-fed patch antenna @ 10GHz

Microstrip
line

Microstrip
line

Microstrip
line

antenna
patch

Step in
width

Gap coupled
microstrip

MoM meshing

circuit partitioning + MAPS

new modelnew model

gnd
Duroid 5870

Duroid 5870

2 layer substrate
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Microstrip-fed patch antenna @ 10GHz - cont.Microstrip-fed patch antenna @ 10GHz - cont.

MAPS

MoM (Momentum)

measured

frequency (GHz)

|S11|

frequency (GHz)

• some couplings are neglected
• differences between model parameters 
  and actual material and geometry data

• optimised for 10 GHz center frequency
• takes only a few minutes of CPU-time!

initial
response

after
optimization

|S11|
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ConclusionsConclusions

�      planar solution techniques can now handle
complex high-speed and RF circuits with many
ports

�      full-wave analysis accuracy and flexibility and
fast circuit analysis, design and optimisation can
now be combined

�

�
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